融合NCG算法的职业教育平台个性化推荐设计[1]
DOI:
CSTR:
作者:
作者单位:

福建船政交通职业学院

作者简介:

通讯作者:

中图分类号:

G423?

基金项目:


Personalized Recommendation Design for Vocational Education Platforms Integrated with the NCG Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,随着职业教育在线学习的迅速发展,如何实现个性化学习推荐成为亟待解决的关键问题。本文提出了一种基于融合非线性共轭梯度(NCG)算法的协同过滤模型,并将其应用于职业教育在线学习平台的个性化设计中。通过改进传统协同过滤算法中的相似度计算与优化策略,提升了推荐精度和效率。本文首先分析职业教育在线学习平台的用户行为与数据特征,构建基于 NCG 的协同过滤推荐框架,并对其进行系统设计与实现。在实验部分,通过真实数据集的实验验证,结果表明本文方法能够有效提升推荐系统的精度和效率,为职业教育在线学习提供高效的个性化服务支持。

    Abstract:

    In recent years, with the rapid development of online vocational education, how to achieve personalized learning recommendations has become a key issue that needs to be addressed. This paper proposes a collaborative filtering model integrated with the Nonlinear Conjugate Gradient (NCG) algorithm and applies it to the personalized design of vocational education online learning platforms. By improving the similarity calculation and optimization strategies in traditional collaborative filtering algorithms, the recommendation accuracy and efficiency are enhanced. This paper first analyzes the user behavior and data features of vocational education online learning platforms, constructs an NCG-based collaborative filtering recommendation framework, and carries out its system design and implementation. In the experimental section, results based on real datasets show that the proposed method can effectively improve the recommendation system"s accuracy and efficiency, providing efficient personalized service support for online vocational education learning.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-13
  • 最后修改日期:2025-01-13
  • 录用日期:2025-02-10
  • 在线发布日期:
  • 出版日期:
文章二维码